Topology Optimisation of Hydraulic Devices

The Department of Mechanical & Aerospace Engineering at the University of Strathclyde (Glasgow, UK) is looking for a motivated student to be enrolled in their PhD program.

Project Aims and Objective

Development and application of topology optimisation methods and tools to find the best configuration of innovative hydraulic devices – or some of their components – to achieve the best structural design.
With the spread of modern additive manufacturing techniques, topology optimisation represents an advanced methodology for structure optimisation. Topology optimization algorithms address the problem of structure optimisation, by targeting the optimal distribution of material and void regions within a predefined design space.
As in other fields of optimisation, also in topology optimisation, gradient based optimisation techniques have the well-known limitations for engineering applications (need of a smooth model, convergence to local solutions), while stochastic methods, even if able to handle black-box models they can tackle problems in limited size. The neuro-evolution approach is the one proposed in this research and is aiming at bridging the gap between those two families of techniques. Topology optimisation is performed by optimising the parameters of a neural network that models the material thickness and distribution. Finite element analysis is performed at each step of the optimisation to evaluate the structural performance of the current solution.
This research project is about the development of neuro-evolution topology optimisation techniques and their application to the design of hydraulic devices, or their component
components – to achieve the best structural design approach to optimise the shape of existing hydraulic devices.


Applicants should hold a Masters degree in mechanical engineering or applied mathematics


Experience in the field of structural analysis, machine learning and optimisation is an asset.

Starting date


Student eligibility

UK and EU students.

This project is NOT currently funded.


Edmondo Minisci (
Annalisa Riccardi (